If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+43x-23=0
a = 6; b = 43; c = -23;
Δ = b2-4ac
Δ = 432-4·6·(-23)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-49}{2*6}=\frac{-92}{12} =-7+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+49}{2*6}=\frac{6}{12} =1/2 $
| (2x-1)^-13=(x-1)(x-2) | | 2,5+14y=-3,1 | | 2,5+14y=3,1 | | 8=6/4+x | | 7+5(x-7)=22 | | a^=11a-18 | | d/2+18=26 | | -5,6/14=y | | 4^y=128 | | 3y^+6y+8=0 | | 43x+3=3 | | 3(x-2)+11=8(2-3x)-10 | | 5/x=x-3/2 | | 7m=98 | | 5x=x-50 | | 5x–4=2x–1 | | X-2(x+4)=5 | | 28=4b-12 | | 17=9r-19 | | 7x+12=5x-9 | | 5=w-13 | | 10(s-7)=-151 | | (9-2x)=(7-4x+6x^2) | | 10=6-x/2 | | 21=9+2c | | 21=4c+9 | | x+(30x+x)=90 | | 10(x-7)=-151 | | 5^3x=6^-x+1 | | 7y-2(8y+1)=-6 | | w/12-9=0 | | 2b=-5b+7b |